Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2log xx^2 log\ x

Answer

Let I I =∫$$x^2 log\ x\ dx

Taking log xlog\ x as first function and x2x^2 as second function and integrating by parts, we obtain

I=log x[x2dx(ddxlog x)x2dx]dxI= log\ x∫[x^2dx-∫{(\frac {d}{dx}log\ x)∫x^2dx]}dx

I=log x(x33)1x.x33dxI= log\ x(\frac {x^3}{3})-∫\frac 1x.\frac {x^3}{3}dx

I=x3log x3x23dxI=\frac { x^3log\ x}{3}-∫\frac {x^2}{3}dx

I=x3log x3x39+CI= \frac {x^3log\ x}{3}-\frac {x^3}{9}+C