Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: (x2+1)logx(x^2+1)logx

Answer

The correct answer is: (x33+x)logxx39x+C(\frac{x^3}{3}+x)logx-\frac{x^3}{9}-x+C
Let I=(x2+1)logxdx=x2logxdx+logxdxI=∫(x^2+1)logx\, dx=∫x^2 logx\, dx+∫logx\, dx
Let I=I1+I2...(1)I=I_1+I_2...(1)
Where,I1=x2logxdxandI2=logxdxI_1=∫x^2logx\, dx\,\, and \,\,I_2=∫logx dx
I1=x2logxdxI_1=∫x^2logx\, dx
Taking log xx as first function and x2x^2 as second function and integrating by parts,we
obtain
I1=logxx2dx[(ddxlogx)x2dx]dxI_1=logx-∫x^2dx-∫[{(\frac{d}{dx}logx)∫x^2dx}]dx
=logx.x331x.x33dx=logx.\frac{x^3}{3}-∫\frac{1}{x}.\frac{x^3}{3}dx
=x33logx13(x2dx)=\frac{x^3}{3}logx-\frac{1}{3}(∫x^2dx)
=x33logxx39+C1...(2)=\frac{x^3}{3}logx-\frac{x^3}{9}+C1...(2)
I2=logxdxI_2=∫logx dx
Taking log xx as first function and 1 as second function and integrating by parts,we
obtain
I2=logx1.dx(ddxlogx)1.dxI_2=logx∫1.dx-∫{(\frac{d}{dx}logx)∫1.dx}
=logx.x1x.xdx=logx.x-∫\frac{1}{x}.xdx
=xlogx1dx=xlogx-∫1dx
=xlogxx+C2...(3)=xlogx-x+C2...(3)
Using equations(2)and(3)in(1),we obtain
I=x33logxx39+C1+xlogxx+C2I=\frac{x^3}{3}logx-\frac{x^3}{9}+C_1+xlogx-x+C_2
=x33logxx39+xlogxx+(C1+C2)=\frac{x^3}{3}logx-\frac{x^3}{9}+xlogx-x+(C_1+C_2)
=(x33+x)logxx39x+C=(\frac{x^3}{3}+x)logx-\frac{x^3}{9}-x+C