Solveeit Logo

Question

Question: Integrate the function \( {\tan ^2}\left( {2x - 3} \right) \) ....

Integrate the function tan2(2x3){\tan ^2}\left( {2x - 3} \right) .

Explanation

Solution

Hint : To solve this question first we should know that tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1 , and if we integrate it individually then we will get the result. We majorly use integration by substitution in such questions to get the required , and do not forget to put the value of original variable at the last.

Complete step-by-step answer :
Given, the function is tan2(2x3){\tan ^2}\left( {2x - 3} \right) .
Let I=tan2(2x3)dx{\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x
As, tan2θ=sec2θ1{\tan ^2}\theta = {\sec ^2}\theta - 1
Here, θ=2x3\theta = 2x - 3 .
So,
I=tan2(2x3)dx I=(sec2(2x3)1)dx I=sec2(2x3)dx1dx   \Rightarrow {\text{I}} = \int {{{\tan }^2}\left( {2x - 3} \right)} {\text{d}}x \\\ \Rightarrow {\text{I}} = \int {\left( {{{\sec }^2}\left( {2x - 3} \right) - 1} \right)} {\text{d}}x \\\ \Rightarrow {\text{I}} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x - \int {1 \cdot {\text{d}}x} \;
Let, I1=sec2(2x3)dx{{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x
So, I=I11dx{\text{I}} = {{\text{I}}_1} - \int {1 \cdot {\text{d}}x} ………………….(i)
I1=sec2(2x3)dx{{\text{I}}_1} = \int {{{\sec }^2}} \left( {2x - 3} \right){\text{d}}x ………….(ii)
Let, t=2x3t = 2x - 3 .
Now, differentiate the above equation with respect to x.

dtdx=2 dt2=dx   \dfrac{{{\text{d}}t}}{{{\text{d}}x}} = 2 \\\ \dfrac{{dt}}{2} = {\text{d}}x \;

Now, substitute the above value in the equation (ii) and also substitute the value of 2x-3 in the (ii) equation.
I1=sec2tdt2 I1=12sec2tdt   \Rightarrow {{\text{I}}_1} = \int {{{\sec }^2}} t\dfrac{{{\text{d}}t}}{2} \\\ \Rightarrow {{\text{I}}_1} = \dfrac{1}{2}\int {{{\sec }^2}} t{\text{d}}t \;
As we know that sec2xdx=tanx\int {{{\sec }^2}} x{\text{d}}x = \tan x , so using this concept simplifies the above equation.
I1=12tant+C1{{\text{I}}_1} = \dfrac{1}{2}\tan t + {C_1}
Now, again substitute the value of t in the above equation.
I1=12tan(2x3)+C1{{\text{I}}_1} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1}
Now, substitute the above value in the equation (i).
I=12tan(2x3)+C11dx I=12tan(2x3)+C1x+C2 I=12tan(2x3)x+C   \Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - \int {1 \cdot {\text{d}}x} \\\ \Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) + {C_1} - x + {C_2} \\\ \Rightarrow {\text{I}} = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C \;
So, when we integrate the function tan2(2x3){\tan ^2}\left( {2x - 3} \right) , we the result as 12tan(2x3)x+C\dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C .
So, the correct answer is “ 12tan(2x3)x+C\dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C .”.

Note : Integration of Maths is a means of combining or summing up the elements to find the whole. It is a reverse differentiation process, where we reduce the functions into components. This approach is used to find a large scale for the summation. Both integration and differentiation are basic components of calculus..