Question
Mathematics Question on integral
Integrate the function: tan2(2x−3)
Answer
tan2(2x−3)=sec2(2x−3)−1
Let 2x - 3 = t
∴ 2dx = dt
∫tan2(2x−3)dx=∫[(sec2(2x−3))−1]dx
=21∫(sec2t)dt−∫1dx
=21∫sec2tdt−∫1dx
= 21tant−x+C
= 21tan(2x−3)−x+C
Integrate the function: tan2(2x−3)
tan2(2x−3)=sec2(2x−3)−1
Let 2x - 3 = t
∴ 2dx = dt
∫tan2(2x−3)dx=∫[(sec2(2x−3))−1]dx
=21∫(sec2t)dt−∫1dx
=21∫sec2tdt−∫1dx
= 21tant−x+C
= 21tan(2x−3)−x+C