Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: tan1xtan^{-1}x

Answer

The correct answer is: xtan1x12log(1+x2)+Cxtan^{-1}x-\frac{1}{2}log(1+x^2)+C

Let I=1.tan1xdxI=∫1.tan^{-1}x dx

Taking tan1xtan^{-1}x as first function and 1 as second function and integrating by parts,we
obtain

I=tan1x1dx[(ddxtan1x)1.dx]dxI=tan^{-1}x∫1dx-∫[{(\frac{d}{dx}tan^{-1}x)∫1.dx}]dx

=tan1x.x11+x2.xdx=tan^{-1}x.x-∫\frac{1}{1+x^2}.x dx

=xtan1x122x1+x2dx=xtan^{-1}x-\frac{1}{2}∫\frac{2x}{1+x^2} dx

=xtan1x12log1+x2+C=xtan^{-1}x-\frac{1}{2}log|1+x^2|+C

=xtan1x12log(1+x2)+C=xtan^{-1}x-\frac{1}{2}log(1+x^2)+C