Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2+4x+6\sqrt{x^2+4x+6}

Answer

Let I=x2+4x+6dxI=\int \sqrt{x^2+4x+6} \,dx

=x2+4x+4+2dx\int \sqrt{x^2+4x+4+2} \,dx

=x2+4x+4+2dx\int \sqrt{x^2+4x+4+2} \,dx

=(x+2)2+(2)2dx\int \sqrt{(x+2)^2+(\sqrt2)^2}dx

=It is known that,x2+a2dx=x2x2+a2+a22logx+x2+a2+C\int \sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log\mid x+\sqrt{x^2+a^2 }\mid+C

I=(x+2)2x2+4x+6+22log(x+2)+x2+4x+6+CI = \frac{(x+2)}{2}\sqrt{x^2+4x+6}+\frac{2}{2}\log \mid(x+2)+\sqrt{x^2+4x+6}\mid+C

=(x+2)2x2+4x+6+log(X+2)+x2+4x+6+C\frac{(x+2)}{2}\sqrt{x^2+4x+6}+\log \mid (X+2)+\sqrt{x^2+4x+6}\mid+C