Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2+4x5\sqrt{x^2+4x-5}

Answer

Let I=x2+4x5dxI=\int \sqrt{x^2+4x-5}dx

=(x2+4x+4)9dx\int\sqrt{(x^2+4x+4)-9}dx

=(x+2)2(3)2dx=\int \sqrt{(x+2)^2-(3)^2}dx

It is known that,x2a2dx=x2x2a2a22logx+x2a2+C\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log\mid x+\sqrt{x^2-a^2}\mid+C

I=(x+2)2x2+4x592log(x+2)+x2+4x5+CI= \frac{(x+2)}{2}\sqrt{x^2+4x-5}-\frac{9}{2}\log\mid (x+2)+\sqrt{x^2+4x-5}\mid +C