Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2+4x+1\sqrt{x^2+4x+1}

Answer

Let I=x2+4x+1dxI=\int \sqrt{x^2+4x+1}\,dx

=(x2+4x+4)3dx\int \sqrt{(x^2+4x+4)-3}dx

=(x+2)2(3)2dx\int \sqrt{(x+2)^2-(\sqrt3)^2}dx

It is known that,x2a2dx=x2x2a2a22logx+x2a2+C\int \sqrt{x^2-a^2}\,dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log \mid x+\sqrt{x^2-a^2}\mid+C

∴=I=(x+2)2x2+4x+132log(x+2)+x2+4x+1+CI=\frac{(x+2)}{2}\sqrt{x^2+4x+1-}\frac{3}{2}\log\mid (x+2)+\sqrt{x^2+4x+1}\mid+C