Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2+3x\sqrt{x^2+3x}

Answer

LetI=x2+3xdxI= \int \sqrt{x^2+3x} \: dx

=x2+3x+9494dx\int \sqrt{x^2+3x+\frac{9}{4}-\frac{9}{4}}dx

=(x+32)2(32)2dx\int \sqrt{\bigg(x+\frac{3}{2}\bigg)^2-\bigg(\frac{3}{2}\bigg)^2}dx

It is known that,x2a2dx=x2x2a2a22logx+x2a2+C\int \sqrt{x^2-a^2}dx=\frac{x}{2}\sqrt{x^2-a^2}-\frac{a^2}{2}\log\mid x+\sqrt{x^2-a^2\mid}+C

I=(x+32)2x2+3x942log(x+32)+x2+3x+CI= \frac{\bigg(x+\frac{3}{2}\bigg)}{2}\sqrt{x^2+3x}-\frac{\frac{9}{4}}{2}\log \mid \bigg(x+\frac{3}{2}\bigg)+\sqrt{x^2+3x}\mid+C

=(2x+3)4x2+3x98log(x+32)+x2+3x+C\frac{(2x+3)}{4}\sqrt{x^2+3x}-\frac{9}{8}\log \mid \bigg(x+\frac{3}{2}\bigg)+\sqrt{x^2+3x}\mid+C