Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1x1+x\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}

Answer

I=1x1+xI=\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}
Let  x=cos2θdx=2sinθcosθ  dθLet\space x=cos^{2}θ⇒dx=-2sinθcosθ\space dθ
I=1cosθ1+cosθ(2sinθcosθ)dθI=\int\sqrt{\frac{1-cosθ}{1+cosθ}}(-2sinθcosθ)dθ
=2sin2θ22cos2θ2sin2θdθ=-\int\sqrt{\frac{2sin^{2}\frac{θ}{2}}{2cos^{2}\frac{θ}{2}}}sin2θdθ
=tanθ2.sinθcosθdθ=-\int tan\frac{θ}{2}.sinθcosθdθ
=2sinθ2cosθ2(2sinθ2cosθ2)cosθdθ=-2\int \frac{sin\frac{θ}{2}}{cos\frac{θ}{2}}(2sin\frac{θ}{2}cos\frac{θ}{2})cosθdθ
=4sin2θ2cosθdθ=-4\int sin^{2}\frac{θ}{2}cosθdθ
=4sin2θ2.(2cos2θ21)dθ=-4\int sin^{2}\frac{θ}{2}.(2cos^{2}\frac{θ}{2}-1)dθ
=4(2sin2θ2cos2θ2sin2θ2)dθ=-4\int (2sin^{2}\frac{θ}{2}cos^{2}\frac{θ}{2}-sin^{2}\frac{θ}{2})dθ
=8sin2θ2.cos2θ2dθ+4sin2θ2dθ=-8\int sin^{2}\frac{θ}{2}.cos^{2}\frac{θ}{2}dθ+4\int sin^{2}\frac{θ}{2}dθ
=2sin2θdθ+4sin2θ2dθ=-2\int sin^{2}θdθ+4\int sin^{2}\frac{θ}{2}dθ
=2(1cos2θ2)dθ+41cosθ2dθ=-2\int(\frac{1-cos2θ}{2})dθ+4\int\frac{1-cosθ}{2}dθ
=2[θ2sin2θ4]+4[θ2sinθ2]+C=θ+sin2θ2+2θ2sinθ+C=-2[\frac{θ}{2}-\frac{sin2θ}{4}]+4[\frac{θ}{2}-\frac{sinθ}{2}]+C =-θ+\frac{sin2θ}{2}+2θ-2sinθ+C
=θ+sin2θ22sinθ+C=θ+\frac{sin2θ}{2}-2sinθ+C
=θ+2sinθcosθ22sinθ+C=θ+\frac{2sinθcosθ}{2}-2sinθ+C
=θ+1cos2θ.cosθ21cos2θ+C=θ+\sqrt{1-cos^{2}θ}.cosθ-2\sqrt{1-cos^{2}θ}+C
=cos1x+1x.x21x+C=cos^{-1}\sqrt{x}+\sqrt{1-x}.\sqrt{x}-2\sqrt{1-x}+C
=21x+cos1x+x(1x)+C=-2\sqrt{1-x}+cos^{-1}\sqrt{x}+\sqrt{x(1-x)}+C
=21x+cos1x+xx2+C=-2\sqrt{1-x}+cos^{-1}\sqrt{x}+\sqrt{x-x^{2}}+C