Question
Mathematics Question on integral
Integrate the function: 1+x1−x
Answer
I=1+x1−x
Letx=cos2θ⇒dx=−2sinθcosθdθ
I=∫1+cosθ1−cosθ(−2sinθcosθ)dθ
=−∫2cos22θ2sin22θsin2θdθ
=−∫tan2θ.sinθcosθdθ
=−2∫cos2θsin2θ(2sin2θcos2θ)cosθdθ
=−4∫sin22θcosθdθ
=−4∫sin22θ.(2cos22θ−1)dθ
=−4∫(2sin22θcos22θ−sin22θ)dθ
=−8∫sin22θ.cos22θdθ+4∫sin22θdθ
=−2∫sin2θdθ+4∫sin22θdθ
=−2∫(21−cos2θ)dθ+4∫21−cosθdθ
=−2[2θ−4sin2θ]+4[2θ−2sinθ]+C=−θ+2sin2θ+2θ−2sinθ+C
=θ+2sin2θ−2sinθ+C
=θ+22sinθcosθ−2sinθ+C
=θ+1−cos2θ.cosθ−21−cos2θ+C
=cos−1x+1−x.x−21−x+C
=−21−x+cos−1x+x(1−x)+C
=−21−x+cos−1x+x−x2+C