Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1+x29\sqrt{1+\frac{x^2}{9}}

Answer

Let I=1+x29dx=139+x2dx=13(3)2+x2dxI= \int \sqrt{1+\frac{x^2}{9}}dx=\frac{1}{3}\int \sqrt{9+x^2}dx=\frac{1}{3}\int\sqrt{(3)^2+x^2}\,dx

It is known that,x2+a2dx=x2x2+a2+a22logx+x2+a2+C\int \sqrt{x^2+a^2}dx=\frac{x}{2}\sqrt{x^2+a^2}+\frac{a^2}{2}\log\mid x+\sqrt{x^2+a^2}\mid+ C

I=13[x2x2+9+92logx+x2+9]+CI=\frac{1}{3}\bigg[\frac{x}{2}\sqrt{x^2+9}+\frac{9}{2}\log\mid x+\sqrt{x^2+9}\mid\bigg]+C

=x6x2+9+32logx+x2+9+C\frac{x}{6}\sqrt{x^2+9}+\frac{3}{2}\log\mid x+\sqrt{x^2+9}\mid+C