Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 14xx2\sqrt{1-4x-x^2}

Answer

Let I=14xx2dxI=\int \sqrt{1-4x-x^2}dx

=1(x2+4x+44)dx\int \sqrt{1-(x^2+4x+4-4)}dx

=1+4(x+2)2dx\int \sqrt{1+4-(x+2)^2}dx

=(5)2(x+2)2dx\int\sqrt{(\sqrt5)^2-(x+2)^2}dx

It is known that,a2x2dx=x2a2x2+a22sin1xa+C\int \sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C

I=(x+2)214xx2+52sin1(x+25)+CI=\frac{(x+2)}{2}\sqrt{1-4x-x^2}+\frac{5}{2}\sin^{-1}\bigg(\frac{x+2}{\sqrt 5}\bigg)+C