Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 14x2\sqrt {1-4x^2}

Answer

Let I=14x2dx=(1)2(2x)2dxI=\int \sqrt {1-4x^2}dx=\int \sqrt{(1)^2-(2x)^2}dx

Let 2x=t \Rightarrow 2dx=dt

I=12(1)2(t)2dtI = \frac{1}{2}\sqrt{(1)^2-(t)^2}dt

It is known that, a2x2dx=x2a2x2+a22sin1xa+C\int \sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C

I=12[t21t2+12sin1t]+C\Rightarrow I=\frac{1}{2}\bigg[\frac{t}{2}\sqrt{1-t^2}+\frac{1}{2}\sin^{-1}t\bigg]+C

=t41t2+14sin12x+C\frac{t}{4}\sqrt{1-t^2}+\frac{1}{4}\sin^{-1}2x+C

=2x414x2+14sin12x+C\frac{2x}{4}\sqrt{1-4x^2}+\frac{1}{4}\sin^{-1}2x+C

=x214x2+14sin12x+C\frac{x}{2}\sqrt{1-4x^2}+\frac{1}{4}\sin^{-1}2x+C