Question
Mathematics Question on integral
Integrate the function: 1−4x2
Answer
Let I=∫1−4x2dx=∫(1)2−(2x)2dx
Let 2x=t ⇒ 2dx=dt
∴I=21(1)2−(t)2dt
It is known that, ∫a2−x2dx=2xa2−x2+2a2sin−1ax+C
⇒I=21[2t1−t2+21sin−1t]+C
=4t1−t2+41sin−12x+C
=42x1−4x2+41sin−12x+C
=2x1−4x2+41sin−12x+C