Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1+3xx2\sqrt{1+3x-x^2}

Answer

Let I=1+3xx2dxI= \int \sqrt{1+3x-x^2}dx

=1(x23x+9494)dx\int \sqrt{1-\bigg(x^2-3x+\frac{9}{4}-\frac{9}{4}\bigg)}dx

=(1+94)(x32)2dx\int\sqrt{\bigg(1+\frac{9}{4}\bigg)-\bigg(x-\frac{3}{2}\bigg)^2}dx

=(132)2(x32)2dx\int\sqrt{\bigg(\frac{\sqrt13}{2}\bigg)^2-\bigg(x-\frac{3}{2}\bigg)^2}dx

It is known that,a2x2dx=x2a2x2+a22sin1xa+C\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C

I=x3221+3xx2+1342sin1(x32132)+CI= \frac{x-\frac{3}{2}}{2}\sqrt{1+3x-x^2}+\frac{13}{4*2}\sin^{-1}\bigg(\frac{x-\frac{3}{2}}{\frac{\sqrt 13}{2}}\bigg)+C

=2x341+3xx2+138sin1(2x313)+C\frac{2x-3}{4}\sqrt{1+3x-x^2}+\frac{13}{8}\sin^{-1}\bigg(\frac{2x-3}{\sqrt 13}\bigg)+C