Question
Mathematics Question on integral
Integrate the function: (sin−1x)2
Answer
The correct answer is: =x(sin−1x)2+21−x2sin−1x−2x+C
Let I=∫(Sin−1x)2.1dx
Taking(sin−1x)2 as first function and 1 as second function and integrating by parts,we
obtain
I=(sin−1x)∫1dx−∫[dxd(sin−1x)2.∫1.dx]dx
=(sin−1x)2.x−∫1−x22sin−1x.xdx
=x(sin−1x)2+∫sin−1x.(1−x2−2x)dx
=x(sin−1x)2+[sin−1x∫1−x2−2xdx−∫(dxdsin−1x)∫1−x2−2xdx]dx
=x(sin−1x)2+[sin−1x.21−x2−∫1−x21.21−x2dx]
=x(sin−1x)2+21−x2sin−1x−∫2.dx
=x(sin−1x)2+21−x2sin−1x−2x+C