Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: (sin1x)2(sin^{-1}x)^2

Answer

The correct answer is: =x(sin1x)2+21x2sin1x2x+C=x(sin^{-1}x)^2+2\sqrt{1-x^2}sin^{-1}x-2x+C
Let I=(Sin1x)2.1dxI=∫(Sin^{-1}x)^2.1 dx
Taking(sin1x)2(sin^{-1}x)^2 as first function and 1 as second function and integrating by parts,we
obtain
I=(sin1x)1dx[ddx(sin1x)2.1.dx]dxI=(sin^{-1}x)∫1dx-∫[{\frac{d}{dx}(sin^{-1}x)^2.∫1.dx}]dx
=(sin1x)2.x2sin1x1x2.xdx=(sin^{-1}x)^2.x-∫\frac{2sin^{-1}x}{\sqrt{1-x^2}}.x dx
=x(sin1x)2+sin1x.(2x1x2)dx=x(sin^{-1}x)^2+∫sin^{-1}x.(\frac{-2x}{\sqrt{1-x^2}})dx
=x(sin1x)2+[sin1x2x1x2dx(ddxsin1x)2x1x2dx]dx=x(sin^{-1}x)^2+[sin^{-1}x∫\frac{-2x}{\sqrt{1-x^2}} dx-∫{(\frac{d}{dx} sin^{-1}x)∫\frac{-2x}{\sqrt{1-x^2}} dx}]dx
=x(sin1x)2+[sin1x.21x211x2.21x2dx]=x(sin^{-1}x)^2+[sin^{-1}x.2\sqrt{1-x^2}-∫\frac{1}{\sqrt{1-x^2}}.2\sqrt{1-x^2} dx]
=x(sin1x)2+21x2sin1x2.dx=x(sin^{-1}x)^2+2\sqrt{1-x^2} sin^{-1}x-∫2.dx
=x(sin1x)2+21x2sin1x2x+C=x(sin^{-1}x)^2+2\sqrt{1-x^2}sin^{-1}x-2x+C