Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: sin1(2x1+x2)sin^{-1}(\frac{2x}{1+x^2})

Answer

The correct answer is: 2xtan1log(1+x2)+C2xtan^{-1}-log(1+x^2)+C
Let x=tanθdx=sec2θ.dθx=tanθ\,\,dx=sec^2θ .dθ
sin1(2x1+x2)=sin1(2tanθ1+tan2θ)=sin1(sin2θ)∴sin^{-1}(\frac{2x}{1+x^2})=sin^{-1}(\frac{2tanθ}{1+tan^2θ})=sin^{-1}(sin2θ)
sin1(2x1+x2)dx=2θ.sec2θdθ=2θ.sec2θdθ∫sin^{-1}(\frac{2x}{1+x^2})dx=∫2θ.sec^2θ\,dθ=2∫θ.sec^2θ\,dθ
Integrating by parts,we obtain
2[θ.sec2θdθ[(ddθθ)sec2θdθ]dθ2[θ.∫sec^2θ\,dθ-∫[(\frac{d}{dθ}θ)∫sec^2θ\,dθ]dθ
=2[θ.tanθtanθdθ]=2[θ.tanθ-∫tanθ\,dθ]
=2[θtanθ+logcosθ]+C=2[θ\,tanθ+log|cosθ|]+C
=2[xtan1x+log11+x2]+C=2[xtan^{-1}x+log|\frac{1}{\sqrt{1+x^2}}|]+C
=2xtan1x+2log(1+x2)12+C=2xtan^{-1}x+2log(1+x^2)^{\frac{-1}{2}}+C
=2xtan1x+2[12log(1+x2)]+C=2xtan^{-1}x+2[\frac{-1}{2}log(1+x^2)]+C
=2xtan1log(1+x2)+C=2xtan^{-1}-log(1+x^2)+C