Question
Mathematics Question on integral
Integrate the function: sin−1(1+x22x)
Answer
The correct answer is: 2xtan−1−log(1+x2)+C
Let x=tanθdx=sec2θ.dθ
∴sin−1(1+x22x)=sin−1(1+tan2θ2tanθ)=sin−1(sin2θ)
∫sin−1(1+x22x)dx=∫2θ.sec2θdθ=2∫θ.sec2θdθ
Integrating by parts,we obtain
2[θ.∫sec2θdθ−∫[(dθdθ)∫sec2θdθ]dθ
=2[θ.tanθ−∫tanθdθ]
=2[θtanθ+log∣cosθ∣]+C
=2[xtan−1x+log∣1+x21∣]+C
=2xtan−1x+2log(1+x2)2−1+C
=2xtan−1x+2[2−1log(1+x2)]+C
=2xtan−1−log(1+x2)+C