Question
Question: Integrate the function: \[\int {\sin x\log \left( {\cos x} \right)} dx\]....
Integrate the function: ∫sinxlog(cosx)dx.
Solution
Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.
Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of x can be written as ∫uvdx=u∫vdx−∫(dxd(u)×∫vdx)dx, where u and v are the differentiable functions of x.
Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression ∫sinxlog(cosx)dx, we get
⇒∫sinxlog(cosx)dx=∫(1)sinxlog(cosx)dx
Rewriting 1 as the product of −1 and −1, we get
⇒∫sinxlog(cosx)dx=∫(−1×−1)sinxlog(cosx)dx
We know that we can take constants outside the integral, because ∫af(x)dx=a∫f(x)dx.
Therefore, the equation becomes
⇒∫sinxlog(cosx)dx=(−1)∫(−1)sinxlog(cosx)dx
Simplifying the expression, we get
⇒∫sinxlog(cosx)dx=−∫(−sinx)log(cosx)dx
Now, we will use substitution to integrate the expression.
Let t=cosx.
The derivative of cosx with respect to x is −sinx.
Differentiating both sides of the equation t=cosx with respect to x, we get
⇒dxdt=−sinx
Multiplying both sides of the equation by , we get
⇒dt=(−sinx)dx
Substituting cosx=t and (−sinx)dx=dt in the equation ∫sinxlog(cosx)dx=−∫(−sinx)log(cosx)dx, we get
⇒∫sinxlog(cosx)dx=−∫log(t)dt
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
⇒∫sinxlog(cosx)dx=−∫1×log(t)dt
Using integration by parts, the integral of the product of two differentiable functions of x can be written as ∫uvdx=u∫vdx−∫(dxd(u)×∫vdx)dx, where u and v are the differentiable functions of x.
Let u be logt and v be 1.
Therefore, by integrating ∫1×log(t)dt by parts, we get
⇒∫1×log(t)dt=logt∫(1)dt−∫(dtd(logt)×∫(1)dt)dt
We know that the derivative of the function logx is x1.
Also, we know that the integral of a constant ∫(1)dx is x.
Therefore, we can simplify the integral as
⇒∫1×log(t)dt=logt×t−∫(t1×t)dt
Simplifying the expression, we get
⇒∫log(t)dt=tlogt−∫(1)dt
Integrating the expression, we get
⇒∫log(t)dt=tlogt−t+K, where K is a constant of integration
Substitute ∫log(t)dt=tlogt−t+K in the equation ∫sinxlog(cosx)dx=−∫log(t)dt, we get
⇒∫sinxlog(cosx)dx=−(tlogt−t+K) ⇒∫sinxlog(cosx)dx=−1(tlogt−t+K)
Multiplying the terms using the distributive law of multiplication, we get
⇒∫sinxlog(cosx)dx=−tlogt+t−K
Substituting t=cosx in the equation, we get
⇒∫sinxlog(cosx)dx=−cosxlog(cosx)+(cosx)−K ⇒∫sinxlog(cosx)dx=(cosx)−cosxlog(cosx)−K ⇒∫sinxlog(cosx)dx=cosx[1−log(cosx)]−K
Substituting −K=C, we get
⇒∫sinxlog(cosx)dx=cosx[1−log(cosx)]+C
Thus, we get the value of the integral ∫sinxlog(cosx)dx as cosx[1−log(cosx)]+C.
Note:
We can verify our answer by differentiating the equation cosx[1−log(cosx)]+C with respect to x, and checking if the derivative is sinxlog(cosx).
Rewriting the function cosx[1−log(cosx)]+C, we get
⇒cosx[1−log(cosx)]+C=cosx−cosxlog(cosx)+C
Differentiating the equation with respect to x, we get
⇒dxd[cosx[1−log(cosx)]+C]=−sinx−dxd[cosxlog(cosx)]+0 ⇒dxd[cosx[1−log(cosx)]+C]=−sinx−dxd[cosxlog(cosx)]
Differentiating cosxlog(cosx) using the product rule of differentiation, we get
\Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\\{ {\log \left( {\cos x} \right)} \right\\}}}{{dx}} + \dfrac{{d\left\\{ {\cos x} \right\\}}}{{dx}}\log \left( {\cos x} \right)} \right]
Simplifying the expression, we get
\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\\{ {\log \left( {\cos x} \right)} \right\\}}}{{dx}} - \dfrac{{d\left\\{ {\cos x} \right\\}}}{{dx}}\log \left( {\cos x} \right)\\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}
Multiplying the terms and simplifying the expression, we get
⇒dxd[cosx[1−log(cosx)]+C]=−sinx+sinx+sinxlog(cosx)
Subtracting the terms, we get
⇒dxd[cosx[1−log(cosx)]+C]=sinxlog(cosx)
Since the derivative of cosx[1−log(cosx)]+C is sinxlog(cosx), we have verified that the integral of sinxlog(cosx) is cosx[1−log(cosx)]+C.