Solveeit Logo

Question

Question: Integrate the function: \[\int {\sin x\log \left( {\cos x} \right)} dx\]....

Integrate the function: sinxlog(cosx)dx\int {\sin x\log \left( {\cos x} \right)} dx.

Explanation

Solution

Here, we need to find the value of the given integral. We will use a substitution method to simplify the integral. Then, we will use integration by parts to find the value of the integral.

Formula Used:
We will use the formula of integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.

Complete step by step solution:
We will use a substitution method to solve the given integral.
Rewriting the expression sinxlog(cosx)dx\int {\sin x\log \left( {\cos x} \right)} dx, we get
sinxlog(cosx)dx=(1)sinxlog(cosx)dx\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( 1 \right)\sin x\log \left( {\cos x} \right)} dx
Rewriting 1 as the product of 1 - 1 and 1 - 1, we get
sinxlog(cosx)dx=(1×1)sinxlog(cosx)dx\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \int {\left( { - 1 \times - 1} \right)\sin x\log \left( {\cos x} \right)} dx
We know that we can take constants outside the integral, because af(x)dx=af(x)dx\int {af\left( x \right)} dx = a\int {f\left( x \right)} dx.
Therefore, the equation becomes
sinxlog(cosx)dx=(1)(1)sinxlog(cosx)dx\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( { - 1} \right)\int {\left( { - 1} \right)\sin x\log \left( {\cos x} \right)} dx
Simplifying the expression, we get
sinxlog(cosx)dx=(sinx)log(cosx)dx\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx
Now, we will use substitution to integrate the expression.
Let t=cosxt = \cos x.
The derivative of cosx\cos x with respect to xx is sinx - \sin x.
Differentiating both sides of the equation t=cosxt = \cos x with respect to xx, we get
dtdx=sinx\Rightarrow \dfrac{{dt}}{{dx}} = - \sin x
Multiplying both sides of the equation by , we get
dt=(sinx)dx\Rightarrow dt = \left( { - \sin x} \right)dx
Substituting cosx=t\cos x = t and (sinx)dx=dt\left( { - \sin x} \right)dx = dt in the equation sinxlog(cosx)dx=(sinx)log(cosx)dx\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\left( { - \sin x} \right)\log \left( {\cos x} \right)} dx, we get
sinxlog(cosx)dx=log(t)dt\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt
Thus, we have simplified the expression within the integral.
Now, we will integrate the simplified function using integration by parts.
Rewriting the equation, we get
sinxlog(cosx)dx=1×log(t)dt\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \int {1 \times \log \left( t \right)} dt
Using integration by parts, the integral of the product of two differentiable functions of xx can be written as uvdx=uvdx(d(u)dx×vdx)dx\int {uv} dx = u\int v dx - \int {\left( {\dfrac{{d\left( u \right)}}{{dx}} \times \int v dx} \right)dx} , where uu and vv are the differentiable functions of xx.
Let uu be logt\log t and vv be 11.
Therefore, by integrating 1×log(t)dt\int {1 \times \log \left( t \right)} dt by parts, we get
1×log(t)dt=logt(1)dt(d(logt)dt×(1)dt)dt\Rightarrow \int {1 \times \log \left( t \right)} dt = \log t\int {\left( 1 \right)} dt - \int {\left( {\dfrac{{d\left( {\log t} \right)}}{{dt}} \times \int {\left( 1 \right)} dt} \right)} dt
We know that the derivative of the function logx\log x is 1x\dfrac{1}{x}.
Also, we know that the integral of a constant (1)dx\int {\left( 1 \right)} dx is xx.
Therefore, we can simplify the integral as
1×log(t)dt=logt×t(1t×t)dt\Rightarrow \int {1 \times \log \left( t \right)} dt = \log t \times t - \int {\left( {\dfrac{1}{t} \times t} \right)} dt
Simplifying the expression, we get
log(t)dt=tlogt(1)dt\Rightarrow \int {\log \left( t \right)} dt = t\log t - \int {\left( 1 \right)} dt
Integrating the expression, we get
log(t)dt=tlogtt+K\Rightarrow \int {\log \left( t \right)} dt = t\log t - t + K, where KK is a constant of integration
Substitute log(t)dt=tlogtt+K\int {\log \left( t \right)} dt = t\log t - t + K in the equation sinxlog(cosx)dx=log(t)dt\int {\sin x\log \left( {\cos x} \right)} dx = - \int {\log \left( t \right)} dt, we get
sinxlog(cosx)dx=(tlogtt+K) sinxlog(cosx)dx=1(tlogtt+K)\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \left( {t\log t - t + K} \right)\\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - 1\left( {t\log t - t + K} \right)\end{array}
Multiplying the terms using the distributive law of multiplication, we get
sinxlog(cosx)dx=tlogt+tK\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - t\log t + t - K
Substituting t=cosxt = \cos x in the equation, we get
sinxlog(cosx)dx=cosxlog(cosx)+(cosx)K sinxlog(cosx)dx=(cosx)cosxlog(cosx)K sinxlog(cosx)dx=cosx[1log(cosx)]K\begin{array}{l} \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = - \cos x\log \left( {\cos x} \right) + \left( {\cos x} \right) - K\\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \left( {\cos x} \right) - \cos x\log \left( {\cos x} \right) - K\\\ \Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] - K\end{array}
Substituting K=C - K = C, we get
sinxlog(cosx)dx=cosx[1log(cosx)]+C\Rightarrow \int {\sin x\log \left( {\cos x} \right)} dx = \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C

Thus, we get the value of the integral sinxlog(cosx)dx\int {\sin x\log \left( {\cos x} \right)} dx as cosx[1log(cosx)]+C\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C.

Note:
We can verify our answer by differentiating the equation cosx[1log(cosx)]+C\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C with respect to xx, and checking if the derivative is sinxlog(cosx)\sin x\log \left( {\cos x} \right).
Rewriting the function cosx[1log(cosx)]+C\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C, we get
cosx[1log(cosx)]+C=cosxcosxlog(cosx)+C\Rightarrow \cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C = \cos x - \cos x\log \left( {\cos x} \right) + C
Differentiating the equation with respect to xx, we get
d[cosx[1log(cosx)]+C]dx=sinxd[cosxlog(cosx)]dx+0 d[cosx[1log(cosx)]+C]dx=sinxd[cosxlog(cosx)]dx\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}} + 0\\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \dfrac{{d\left[ {\cos x\log \left( {\cos x} \right)} \right]}}{{dx}}\end{array}
Differentiating cosxlog(cosx)\cos x\log \left( {\cos x} \right) using the product rule of differentiation, we get
\Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \left[ {\cos x\dfrac{{d\left\\{ {\log \left( {\cos x} \right)} \right\\}}}{{dx}} + \dfrac{{d\left\\{ {\cos x} \right\\}}}{{dx}}\log \left( {\cos x} \right)} \right]
Simplifying the expression, we get
\begin{array}{l} \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\dfrac{{d\left\\{ {\log \left( {\cos x} \right)} \right\\}}}{{dx}} - \dfrac{{d\left\\{ {\cos x} \right\\}}}{{dx}}\log \left( {\cos x} \right)\\\ \Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x - \cos x\left[ {\dfrac{1}{{\cos x}} \times \left( { - \sin x} \right)} \right] - \left( { - \sin x} \right)\log \left( {\cos x} \right)\end{array}
Multiplying the terms and simplifying the expression, we get
d[cosx[1log(cosx)]+C]dx=sinx+sinx+sinxlog(cosx)\Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = - \sin x + \sin x + \sin x\log \left( {\cos x} \right)
Subtracting the terms, we get
d[cosx[1log(cosx)]+C]dx=sinxlog(cosx)\Rightarrow \dfrac{{d\left[ {\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C} \right]}}{{dx}} = \sin x\log \left( {\cos x} \right)
Since the derivative of cosx[1log(cosx)]+C\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C is sinxlog(cosx)\sin x\log \left( {\cos x} \right), we have verified that the integral of sinxlog(cosx)\sin x\log \left( {\cos x} \right) is cosx[1log(cosx)]+C\cos x\left[ {1 - \log \left( {\cos x} \right)} \right] + C.