Question
Question: Integrate the function, \(\int{{{e}^{-x}}\csc x\left( 1+\cot x \right)dx}\) (a) \({{e}^{-x}}\csc x...
Integrate the function, ∫e−xcscx(1+cotx)dx
(a) e−xcscx+C
(b) −e−xcscx+C
(c) −e−x(cscx+cotx)+C
(d) −e−x(cscx+tanx)+C
(e) −e−xsecx+C
Solution
Hint: First convert e−xcscx(1+cotx) to −e−x(−(cscxcotx)−cscx) then apply the formula,
∫e−x(f′(x)−f(x))=e−xf(x)+C, here f(x) is a function and f′(x) is obtained on differentiating.
Complete Step-by-Step solution:
In these types of question we have to use identity,
∫e−x(f′(x)−f(x))dx=e−xf(x)
Here in this case if f(x) be a function of x and f′(x) will be a function we got after differentiation of f(x) with respect to x and it is of form e−x(f′(x)−f(x)) then after integration it will become e−xf(x) .
In the given question, we have e−xcscx(1+cotx) then we can write it as,
−e−x((cscxcotx)−cscx)........(i)
Let us consider cscx be f(x). Then on differentiating f(x) we get,
f′(x)=−cscxcotx
So, we can write the expression (i) as,
−e−x(f′(x)−f(x))
Here f(x)=cscx.
So, applying the formula, ∫e−x(f′(x)−f(x))dx=e−xf(x), the integration of −e−x((cscxcotx)−cscx) will be represented as,
∫−e−x((−cscxcotx)−cscx)=−e−x(cscx)+C
Therefore the value of the integration of function e−xcscx(1+cotx) is −e−x(cscx)+C.
Hence, the correct answer is option (b).
Note: Student should be careful while transforming the expression e−xcscx(1+cotx) to −e−x((−cscxcotx)−cscx). This is the area where students generally can’t get the idea what to do, they should visualize using practise.