Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xex(1+x)2\frac{xe^x}{(1+x)^2}

Answer

The correct answer is: xex(1+x)2dx=ex1+x+C∫\frac{xe^x}{(1+x)^2}dx=\frac{e^x}{1+x}+C
Let I=xex(1+x)2dx=exx(1+x)2dxI=∫\frac{xe^x}{(1+x)^2} dx=∫e^x{\frac{x}{(1+x)^2}}dx
=ex=[1+x1(1+x)2]dx=∫e^x=[\frac{1+x-1}{(1+x)^2}]dx
=ex=[11+x1(1+x)2]dx=∫e^x=[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx
Let ƒ(x)=11+xƒ(x)=1(1+x)2ƒ(x)=\frac{1}{1+x}\,\, ƒ'(x)=\frac{-1}{(1+x)^2}
xex(1+x)2dx=ex[ƒ(x)+ƒ(x)]dx⇒∫\frac{xe^x}{(1+x)^2}dx=∫e^x[{ƒ(x)+ƒ'(x)}]dx
It is known that,ex[ƒ(x)+ƒ(x)]dx=exƒ(x)+C∫e^x[ƒ(x)+ƒ'(x)]dx=e^xƒ(x)+C
xex(1+x)2dx=ex1+x+C∴∫\frac{xe^x}{(1+x)^2}dx=\frac{e^x}{1+x}+C