Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xcos1x1x2\frac{xcos^{-1}x}{\sqrt{1-x^2}}

Answer

The correct answer is: =[1x2cos1x+x]+C=-[\sqrt{1-x^2}cos^{-1}x+x]+C
Let I=xcos1x1x2dxI=∫\frac{xcos^{-1}x}{\sqrt{1-x^2}} dx
I=122x1x2.cos1xdxI=\frac{-1}{2} ∫\frac{-2x}{\sqrt{1-x^2}}.cos^{-1}xdx
Taking cos1xcos^{-1}x as first function and(2x1x2)(\frac{-2x}{\sqrt{1-x^2}})as second function and integrating by parts,
we obtain
I=12[cos1x2x1x2dx(ddxcos1x)2x1x2dx]dx]I=\frac{-1}{2}[cos^{-1}x∫\frac{-2x}{\sqrt{1-x^2}} dx-∫{(\frac{d}{dx}cos^{-1}x)∫\frac{-2x}{\sqrt{1-x^2}} dx}]dx]
=12[cos1x.21x211x2.21x2dx]=\frac{-1}{2}[cos^{-1}x.2\sqrt{1-x^2}-∫\frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2} dx]
=12[21x2cos1x+2dx]=\frac{-1}{2}[2\sqrt{1-x^2}\,cos^{-1}x+∫2 dx]
=12[21x2cos1x+2x]+C=\frac{-1}{2}[2\sqrt{1-x^2}cos^{-1}x+2x]+C
=[1x2cos1x+x]+C=-[\sqrt{1-x^2}cos^{-1}x+x]+C