Question
Mathematics Question on integral
Integrate the function: 1−x2xcos−1x
Answer
The correct answer is: =−[1−x2cos−1x+x]+C
Let I=∫1−x2xcos−1xdx
I=2−1∫1−x2−2x.cos−1xdx
Taking cos−1x as first function and(1−x2−2x)as second function and integrating by parts,
we obtain
I=2−1[cos−1x∫1−x2−2xdx−∫(dxdcos−1x)∫1−x2−2xdx]dx]
=2−1[cos−1x.21−x2−∫1−x2−1.21−x2dx]
=2−1[21−x2cos−1x+∫2dx]
=2−1[21−x2cos−1x+2x]+C
=−[1−x2cos−1x+x]+C