Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xx+4,x>0\frac{x}{\sqrt {x+4}}, \,x>0

Answer

Let x+4 = t

∴ dx = dt

xx+4dx=(t4)tdt\int \frac{x}{\sqrt x+4} dx =\int \frac{(t-4)}{\sqrt t}dt

= (t4t)dt\int \bigg(\sqrt t-\frac{4}{\sqrt t}\bigg)dt

= t32324(t1212)+C\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4\bigg(\frac{t^{\frac{1}{2}}}{\frac{1}{2}}\bigg)+C

=23(t)328(t)12+C\frac{2}{3}(t)^{\frac{3}{2}}-8(t)^{\frac{1}{2}}+C

=23t.t128t12+C\frac{2}{3}t.t^{\frac{1}{2}}-8t^{\frac{1}{2}}+C

=23t12(t12)+C\frac{2}{3}t^{\frac{1}{2}}(t-12)+C

= 23(x+4)12(x+412)+C\frac{2}{3}(x+4)^{\frac{1}{2}}(x+4-12)+C

= 23x+4(x8)+C\frac{2}{3}\sqrt {x+4}(x-8)+C