Question
Mathematics Question on integral
Integrate the function: x2−2x−5x+3
The correct answer is: =21log∣x2−2x−5∣+62log∣x−1+6x−1−6∣+C
Let (x+3)=Adxd(x2−2x−5)+B(x+3) = A(2x-2)+B
Equating the coefficients of x and constant term on both sides, we obtain
2A=1⇒A=21
−2A+B=3⇒B=4
∴(x+3)=21(2x−2)+4
⇒∫x2−2x−5x+3dx=∫x2−2x−521(2x−2)+4dx
=21∫x2−2x−52x−2dx+4∫x2−2x−51dx
Let I1=∫x2−2x−52x−2dxandI2=∫x2−2x−51dx
∴∫(x2−2x−5)x+3dx=21I1+4I2...(1)
Then, I1=∫x2−2x−52x−2dx
Let x2−2x−5=t
⇒(2x−2)dx=dt
⇒I1=∫tdt=log∣t∣=log∣x2−2x−5∣...(2)
I2=∫x2−2x−51dx
=∫(x2−2x+1)−61dx
=∫(x−1)2+(6)21dx
=261log(x−1+6x−1−6) ...(3)
Substituting (2) and (3) in (1), we obtain
∫x2−2x−5x+3dx=21log∣x2−2x−5∣+264log∣x−1+6x−1−6∣+C
=21log∣x2−2x−5∣+62log∣x−1+6x−1−6∣+C