Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x+3x22x5\frac{x+3}{x^2-2x-5}

Answer

The correct answer is: =12logx22x5+26logx16x1+6+C=\frac{1}{2}log|x^2-2x-5|+\frac{2}{\sqrt{6}} log|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}|+C
Let (x+3)=Addx(x22x5)+B(x+3) = A\frac{d}{dx}(x^2-2x-5)+B(x+3) = A(2x-2)+B
Equating the coefficients of xx and constant term on both sides, we obtain
2A=1A=122A = 1 ⇒ A = \frac{1}{2}
2A+B=3B=4-2A+B = 3 ⇒ B=4
(x+3)=12(2x2)+4∴ (x+3) = \frac{1}{2}(2x-2)+4
x+3x22x5dx=12(2x2)+4x22x5dx⇒ ∫\frac{x+3}{x^2-2x-5} dx = ∫\frac{\frac{1}{2}(2x-2)+4}{x^2-2x-5} dx
=122x2x22x5dx+41x22x5dx=\frac{1}{2} ∫\frac{2x-2}{x^2-2x-5} dx + 4 ∫\frac{1}{x2-2x-5} dx
Let I1=2x2x22x5dxandI2=1x22x5dxI_1 = ∫\frac{2x-2}{x^2-2x-5} dx\, and\, I_2 = ∫\frac{1}{x^2-2x-5} dx
x+3(x22x5)dx=12I1+4I2...(1)∴ ∫\frac{x+3}{(x^2-2x-5)}dx = \frac{1}{2}I_1+4I_2 ...(1)
Then, I1=2x2x22x5dxI_1 = ∫\frac{2x-2}{x^2-2x-5} dx
Let x22x5=tx^2-2x-5 = t
(2x2)dx=dt⇒(2x-2)dx = dt
I1=dtt=logt=logx22x5...(2)⇒ I_1 = ∫\frac{dt}{t} = log|t|=log|x^2-2x-5| ...(2)
I2=1x22x5dxI_2 = ∫\frac{1}{x^2-2x-5} dx
=1(x22x+1)6dx= ∫\frac{1}{(x^2-2x+1)-6} dx
=1(x1)2+(6)2dx= ∫\frac{1}{(x-1)^2+(\sqrt{6})^2} dx
=126log(x16x1+6)= \frac{1}{2\sqrt{6}} log(\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}) ...(3)
Substituting (2) and (3) in (1), we obtain
x+3x22x5dx=12logx22x5+426logx16x1+6+C∫\frac{x+3}{x^2-2x-5} dx = \frac{1}{2}log|x^2-2x-5|+\frac{4}{2\sqrt{6}} log|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}|+C
=12logx22x5+26logx16x1+6+C=\frac{1}{2}log|x^2-2x-5|+\frac{2}{\sqrt{6}} log|\frac{x-1-\sqrt{6}}{x-1+\sqrt{6}}|+C