Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x3sin(tan1x4)1+x8\frac{x^3 \sin(\tan^{-1}x^4)}{1+x^8}

Answer

Let x4 = t

∴ 4x3 dx = dt

x3sin(tan1x4)1+x8dx=14sin(tan1)1+t2dt\Rightarrow \int\frac{x^3 \sin(\tan^{-1}x^4)}{1+x^8}dx=\frac{1}{4}\int\frac{\sin (\tan^{-1})}{1+t^2}dt

Let tan1t=u\tan^{-1}t=u

11+t2dt=du\frac{1}{1+t^2}dt = du

From (1), we obtain

x3sin(tan1x4)dx1+x8=14sinu  du\int\frac{ x^3\sin(tan^{-1}x^4)dx}{1+x^8}=\frac{1}{4}\int\sin u \; du

= 14(cosu)+C\frac{1}{4}(- \cos u)+C

=14cos(tan1t)+C\frac{-1}{4}\cos(\tan^{-1}t)+C

=14cos(tan1x4)+C\frac{-1}{4}\cos (\tan^{-1}x^4)+C