Question
Mathematics Question on integral
Integrate the function: 1+x8x3sin(tan−1x4)
Answer
Let x4 = t
∴ 4x3 dx = dt
⇒∫1+x8x3sin(tan−1x4)dx=41∫1+t2sin(tan−1)dt
Let tan−1t=u
∴ 1+t21dt=du
From (1), we obtain
∫1+x8x3sin(tan−1x4)dx=41∫sinudu
= 41(−cosu)+C
=4−1cos(tan−1t)+C
=4−1cos(tan−1x4)+C