Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: (x3)ex(x1)3\frac{(x-3)e^x}{(x-1)^3}

Answer

The correct answer is: ex[(x3)(x1)2]dx=ex(x1)2+C∫e^x[\frac{(x-3)}{(x-1)^2}]dx=\frac{e^x}{(x-1)^2}+C
ex=[x3(x1)3]dx=ex[x12(x1)3]dx∫e^x=[\frac{x-3}{(x-1)^3}]dx=∫e^x[\frac{x-1-2}{(x-1)^3}]dx
=ex[1(x1)22(x1)3]dx=∫e^x[\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3}]dx
Let ƒ(x)=1(x1)2ƒ(x)=2(x1)3ƒ(x)=\frac{1}{(x-1)^2}\,\,ƒ'(x)=\frac{-2}{(x-1)^3}
It is known that,ex[ƒ(x)+ƒ(x)]dx=exƒ(x)+C∫e^x[ƒ(x)+ƒ'(x)]dx=e^x ƒ(x)+C
ex[(x3)(x1)2]dx=ex(x1)2+C∴∫e^x[\frac{(x-3)}{(x-1)^2}]dx=\frac{e^x}{(x-1)^2}+C