Question
Mathematics Question on integral
Integrate the function: (x+1)2(x+2)x2+x+1
Answer
Let(x+1)2(x+2)x2+x+1=(x+1)A+(x+1)2B+(x+2)C...(1)
⇒x2+x+1=A(x+1)(x+2)+B(x+2)+C(x2+2x+1)
⇒x2+x+1=A(x2+3x+2)+B(x+2)+C(x2+2x+1)
⇒x2+x+1=(A+C)x2+(3A+B+2C)x+(2A+2B+C)
Equating the coefficients of x2,x, and constant term,we obtain
A+C=1
3A+B+2C=1
2A+2B+C=1
On solving these equations,we obtain
A=−2,B=1,andC=3
From equation(1),we obtain
(x+1)2(x+2)x2+x+1=(x+1)−2+(x+2)3+(x+1)21
∫(x+1)2(x+2)x2+x+1dx=−2∫x+11dx+3∫(x+2)1dx+∫(x+1)21dx
=−2log∣x+1∣+3log∣x+2∣−(x+1)1+C