Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x+2x2+2x+3\frac{x+2}{\sqrt {x^2+2x+3}}

Answer

x+2x2+2x+3\frac{x+2}{\sqrt{x^2+2x+3}}dx = 12\frac{1}{2}2(x+2)x2+2x+3\frac{2(x+2)}{\sqrt{x^2+2x+3}} dx

=12\frac{1}{2}2x+4x2+2x+3\frac{2x+4}{\sqrt{x^2+2x+3}} dx

=12\frac{1}{2}2x+2x2+2x+3\frac{2x+2}{\sqrt{x^2+2x+3}}dx +12\frac{1}{2}2x2+2x+3\frac{2}{\sqrt{x^2+2x+3}} dx

=12\frac{1}{2}2x+2x2+2x+3\frac{2x+2}{\sqrt{x^2+2x+3}} dx + ∫1x2+2x+3\frac{1}{\sqrt{x^2+2x+3}} dx

Let I1 = ∫2x+2x2+2x+3\frac{2x+2}{\sqrt{x^2+2x+3}} dx and I2 = ∫1x2+2x+3\frac{1}{\sqrt{x^2+2x+3}} dx

∴ ∫x+2x2+2x+3\frac{x+2}{\sqrt{x^2+2x+3}}dx = 12I1+I2\frac{1}{2} I_1+I_2 ...(1)

Then, I1 = ∫2x+2x2+2x+3\frac{2x+2}{\sqrt{x^2+2x+3}} dx

Let x2 + 2x +3 = t

⇒ (2x + 2) dx =dt

I1 = ∫dtt=2t=2x2+2x+3\frac{dt}{√t} = 2√t = 2\sqrt{x^2+2x+3} ...(2)

I2 = ∫1x2+2x+3dx\frac{1}{\sqrt{x^2+2x+3}} dx

x2+2x+3=x2+2x+1+2=(x+1)2+(2)2x^2+2x+3 = x^2+2x+1+2 = (x+1)^2 + (√2)^2

I2=1(x+1)2+(2)2dx=log(x1)+x2+2x+3...(3)∴ I_2 = ∫\frac{1}{√(x+1)^2+(√2)^2}dx = log|(x-1)+\sqrt{x^2+2x+3 } ...(3)

Using equations (2) and (3) in (1), we obtain

x+2x2+2x+3dx=12[2x2+2x+3]+log(x+1)+x2+2x+3+C∫\frac{x+2}{\sqrt{x^2+2x+3}} dx = \frac{1}{2}[2\sqrt{x^2+2x+3}]+log|(x+1)+\sqrt{x^2+2x+3}|+C

= x2+2x+3+log(x+1)+x2+2x+3+C\sqrt{x^2+2x+3}+log|(x+1)+\sqrt{x^2+2x+3}|+C