Question
Mathematics Question on integral
Integrate the function: x2+2x+3x+2
Answer
∫x2+2x+3x+2dx = 21 ∫x2+2x+32(x+2) dx
=21 ∫x2+2x+32x+4 dx
=21 ∫x2+2x+32x+2dx +21 ∫x2+2x+32 dx
=21∫x2+2x+32x+2 dx + ∫x2+2x+31 dx
Let I1 = ∫x2+2x+32x+2 dx and I2 = ∫x2+2x+31 dx
∴ ∫x2+2x+3x+2dx = 21I1+I2 ...(1)
Then, I1 = ∫x2+2x+32x+2 dx
Let x2 + 2x +3 = t
⇒ (2x + 2) dx =dt
I1 = ∫√tdt=2√t=2x2+2x+3 ...(2)
I2 = ∫x2+2x+31dx
⇒ x2+2x+3=x2+2x+1+2=(x+1)2+(√2)2
∴I2=∫√(x+1)2+(√2)21dx=log∣(x−1)+x2+2x+3...(3)
Using equations (2) and (3) in (1), we obtain
∫x2+2x+3x+2dx=21[2x2+2x+3]+log∣(x+1)+x2+2x+3∣+C
= x2+2x+3+log∣(x+1)+x2+2x+3∣+C