Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x+2x21\frac {x+2}{\sqrt {x^2-1}}

Answer

Let x+2 = Addx\frac {d}{dx}(x2-1) + B .....(1)

⇒ x+2 = A(2x)+B

Equating the coefficients of x and constant term on both sides, we obtain

2A = 1 ⇒ A = 12\frac 12

B = 2

From (1), we obtain

(x+2) = 12\frac 12(2x)+2

Then, ∫$$\frac {x+2}{\sqrt {x^2-1}}\ dx = 12(2x)+2x21∫\frac {\frac 12(2x)+2}{\sqrt {x^2-1}} .....(2)

In 122xx21 dx\frac 12 ∫\frac {2x}{\sqrt {x^2-1}}\ dx dx, let x2-1 = t ⇒ 2x dx = dt

122xx21 dx\frac 12 ∫\frac {2x}{\sqrt {x^2-1}}\ dx= 12dtt\frac 12 ∫\frac {dt}{\sqrt t}

= 12[2t]\frac 12[2\sqrt t]

=t\sqrt t

=x21\sqrt {x^2-1}

Then, 2x21 dx∫\frac {2}{\sqrt {x^2-1}}\ dx = 2xx21 dx2∫\frac {x}{\sqrt {x^2-1}}\ dx = 2 log x+x212\ log\ |x+\sqrt {x^2-1}|

From equation (2), we obtain

∫$$\frac {x+2}{\sqrt {x^2-1}}\ dx = x21+2 log x+x21+C\sqrt {x^2-1}+2\ log\ |x+\sqrt {x^2-1}|+C