Question
Mathematics Question on integral
Integrate the function: 4x−x2x+2
Let x+2 = Adxd(4x-x2)+B
⇒ x+2 = A(4-2x)+B
Equating the coefficients of x and constant term on both sides, we obtain
-2A = 1 ⇒ A = 2−1
4A + B = 2 ⇒ B =4
⇒ (x+2) =2−1(4-2x)+4
∴ ∫4x−x2x+2 dx = ∫-1/2(4-2x)+4/√4x-x2 dx
= 2−1∫4x−x24−2x dx+4 ∫4x−x21 dx
Let I1 = ∫4x−x24−2x dx and I2 =∫4x−x21 dx
∴ ∫x+2/√4x-x2 dx = 2−1 I1+4I2 ...(1)
then, I1 = ∫4-2x/√4x-x2 dx
Let 4x-x2 = t
⇒ (4-2x)dx = dt
⇒I1 = ∫dt/√t = 2√t = 2√4x-x2 ...(2)
I2 = ∫1/√4x-x2 dx
⇒ 4x-x2 = -(-4x+x2)
=(-4x+x2+4-4)
=4-(x-2)2
=(2)2-(x-2)2
∴ I2 = ∫1/√(2)2-(x-2)2 dx = sin-1(2x−2) ...(3)
Using equations (2) and (3) in (1), we obtain
∫x+2/√4x-x2 dx = -1/2(2√4x-x2)+4sin-1(2x−2)+C
= -\sqrt{4x-x^2}+4sin^{-1}$$(\frac{x-2}{2}))+C