Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x+24xx2\frac{x+2}{\sqrt{4x-x^2}}

Answer

Let x+2 = Addx\frac{d}{dx}(4x-x2)+B
⇒ x+2 = A(4-2x)+B
Equating the coefficients of x and constant term on both sides, we obtain
-2A = 1 ⇒ A = 12\frac{-1}{2}
4A + B = 2 ⇒ B =4
⇒ (x+2) =12\frac{-1}{2}(4-2x)+4
∴ ∫x+24xx2\frac{x+2}{\sqrt{4x-x^2}} dx = ∫-1/2(4-2x)+4/√4x-x2 dx
= 12\frac{-1}{2}42x4xx2\frac{4-2x}{\sqrt{4x-x^2}} dx+4 ∫14xx2\frac{1}{\sqrt{4x-x^2}} dx
Let I1 = ∫42x4xx2\frac{4-2x}{\sqrt{4x-x^2}} dx and I2 =∫14xx2\frac{1}{\sqrt{4x-x^2}} dx
∴ ∫x+2/√4x-x2 dx = 12\frac{-1}{2} I1+4I2 ...(1)
then, I1 = ∫4-2x/√4x-x2 dx
Let 4x-x2 = t
⇒ (4-2x)dx = dt
⇒I1 = ∫dt/√t = 2√t = 2√4x-x2 ...(2)
I2 = ∫1/√4x-x2 dx
⇒ 4x-x2 = -(-4x+x2)
=(-4x+x2+4-4)
=4-(x-2)2
=(2)2-(x-2)2

∴ I2 = ∫1/√(2)2-(x-2)2 dx = sin-1(x22)(\frac{x-2}{2}) ...(3)

Using equations (2) and (3) in (1), we obtain

∫x+2/√4x-x2 dx = -1/2(2√4x-x2)+4sin-1(x22)(\frac{x-2}{2})+C

= -\sqrt{4x-x^2}+4sin^{-1}$$(\frac{x-2}{2}))+C