Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: (x+1)(x+logx)2x\frac{(x+1)(x+log x)^2}{x}

Answer

(x+1)(x+logx)2x=x+1x(x+logx)2=(1+1x)(x+logx)2.\frac{(x+1)(x+log x)^2}{x} = \frac{x+1}{x}(x+log x)^2 = (1+\frac{1}{x})(x+log x)^2.
Let(x+logx)=tLet (x+logx) = t
(1+1x)dx=dt∴ (1+\frac{1}{x})dx = dt
(1+1x)(x+logx)2dx=t2dt⇒ ∫(1+\frac{1}{x})(x+log x)^2 dx = ∫t^2dt
=t33+C=\frac{t^3}{3}+C
=13(x+logx)3+C=\frac{1}{3}(x+log x)^3 +C