Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x1x21\frac {x-1}{\sqrt {x^2-1}}

Answer

x1x21 dx∫\frac {x-1}{\sqrt {x^2-1}}\ dx = xx21 dx∫\frac {x}{\sqrt {x^2-1}}\ dx - 1x21 dx∫\frac {1}{\sqrt {x^2-1}}\ dx ……....(1)

Forxx21dx, letx21=t2xdx=dtFor ∫\frac {x}{\sqrt {x^2-1}} dx, \ let x^2-1 = t ⇒ 2x dx = dt

xx21dx=12dtt∴ ∫\frac {x}{\sqrt {x^2-1}} dx = \frac 12 ∫\frac {dt}{\sqrt t}

=12t12dt=\frac 12 ∫t^{-\frac 12} dt

=12[2t12]=\frac 12[2t^{\frac 12}]

=t=\sqrt t

=x21=\sqrt {x^2-1}

From (1),we obtainFrom\ (1), we\ obtain

x1x21 dx∫\frac {x-1}{\sqrt {x^2-1}}\ dx = xx21 dx∫\frac {x}{\sqrt {x^2-1}}\ dx - 1x21 dx∫\frac {1}{\sqrt {x^2-1}}\ dx [1x2a2 dt=log x+x2a2][∫\frac {1}{\sqrt {x^2-a^2}} \ dt = log\ |x+\sqrt {x^2-a^2|}]

=x21logx+x21+C= \sqrt {x^2-1}-log|x+\sqrt {x^2-1}|+C