Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x2+1[log(x2+1)2logx]x4\frac{\sqrt{x^{2}+1}[log(x^{2}+1)-2logx]}{x^{4}}

Answer

\frac{\sqrt{x^{2}+1}[log(x^{2}+1)-2logx]}{x^{4}}$$=\frac{\sqrt{x^{2}+1}}{x4}[log(x^{2}+1)-logx^{2}]

=x2+1x4[log(x2+1x2)]=\frac{\sqrt{x^{2}+1}}{x^{4}}[log(\frac{x^{2}+1}{x^{2}})]

=x2+1x4log(1+1x2)=\sqrt{\frac{x^{2}+1}{x^{4}}}log(1+\frac{1}{x^{2}})

=1x3x2+1x2log(1+1x2)=\frac{1}{x^{3}}\sqrt{\frac{x^{2}+1}{x^{2}}}log(1+\frac{1}{x^{2}})

=1x3x2+1x2log(1+1x2)=\frac{1}{x^{3}}\sqrt{x^{2}+\frac{1}{x^{2}}}log(1+\frac{1}{x^{2}})

Let1+1x2=t2x3dx=dtLet 1+\frac{1}{x^{2}}=t⇒\frac{-2}{x^{3}}dx=dt

I=1x31+1x2log(1+1x2)dx∴I=∫\frac{1}{x^{3}}\sqrt{1+\frac{1}{{x^{2}log}}(1+\frac{1}{x^{2}}})dx

=12t  logt  dt=\frac{-1}{2}∫\sqrt{t}\space logt\space dt

=12t12.logt  dt=\frac{-1}{2}∫t^{\frac{1}{2}}.logt\space dt

Integrating by parts,we obtain

I=12[logt.t12dt(ddtlogt)t12dt  dt]I=\frac{-1}{2}[logt.∫t^{\frac{1}{2}}dt-{(\frac{d}{dt}logt)∫t^{\frac{1}{2}}dt}\space dt]

=12[logt.t32321t.t3232dt]=\frac{-1}{2}[logt.\frac{t^{\frac{3}{2}}}{\frac{3}{2}}-∫\frac{1}{t}.\frac{t^{\frac{3}{2}}}{\frac{3}{2}}dt]

=12[23t32logt23t12dt]=\frac{-1}{2}[\frac{2}{3}t^{\frac{3}{2}}logt-\frac{2}{3}∫t^{\frac{1}{2}}dt]

=12[23t32logt49t32]=-\frac{1}{2}[\frac{2}{3}t^{\frac{3}{2}}logt-\frac{4}{9}t^{\frac{3}{2}}]

=13t32logt+29t32=-\frac{1}{3}t^{\frac{3}{2}}logt+\frac{2}{9}t^{\frac{3}{2}}

=13t32[logt23]=-\frac{1}{3}t^{\frac{3}{2}}[logt-\frac{2}{3}]

=13(1+1x2)32[log(1+1x2)23]+C=-\frac{1}{3}(1+\frac{1}{x^{2}})^{\frac{3}{2}}[log(1+\frac{1}{x^{2}})-\frac{2}{3}]+C