Question
Mathematics Question on integral
Integrate the function: x4x2+1[log(x2+1)−2logx]
Answer
\frac{\sqrt{x^{2}+1}[log(x^{2}+1)-2logx]}{x^{4}}$$=\frac{\sqrt{x^{2}+1}}{x4}[log(x^{2}+1)-logx^{2}]
=x4x2+1[log(x2x2+1)]
=x4x2+1log(1+x21)
=x31x2x2+1log(1+x21)
=x31x2+x21log(1+x21)
Let1+x21=t⇒x3−2dx=dt
∴I=∫x311+x2log1(1+x21)dx
=2−1∫tlogtdt
=2−1∫t21.logtdt
Integrating by parts,we obtain
I=2−1[logt.∫t21dt−(dtdlogt)∫t21dtdt]
=2−1[logt.23t23−∫t1.23t23dt]
=2−1[32t23logt−32∫t21dt]
=−21[32t23logt−94t23]
=−31t23logt+92t23
=−31t23[logt−32]
=−31(1+x21)23[log(1+x21)−32]+C