Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: sin8xcos8x12sin2xcos2x\frac{sin^8x-cos^8x}{1-2sin^2xcos^2x}

Answer

sin8xcos8x12sin2xcos2x\frac{sin^8x-cos^8x}{1-2sin^2xcos^2x}=(sin4x+cos4x)(sin4xcos4x)sin2x+cos2xsin2xcos2xsin2xcos2x\frac{(sin^4x+cos^4x)(sin^4x-cos^4x)}{sin^2x+cos^2x-sin^2xcos^2x-sin^2xcos^2x}

=(sin4x+cos4x)(sin4xcos4x)sinx(1cos2x)+cos2x(1sin2x)\frac{(sin^4x+cos^4x)(sin^4x-cos^4x)}{sin^x(1-cos^2x)+cos^2x(1-sin^2x)}

=(sin4x+cos4x)(cos2xsin2xsin4x+cos4x-\frac{(sin^4x+cos^4x)(cos^2x-sin^2x}{sin^4x+cos^4x}

=-cos2x

sin8xcos8x12sin2xcos2x\frac{sin^8x-cos^8x}{1-2sin^2xcos^2x}=∫-cos2xdx=-sin2x2\frac{x}{2}+C