Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: ex(1+ex)(2+ex)\frac {e^x}{(1+e^x)(2+e^x)}

Answer

ex(1+ex)(2+ex)\frac {e^x}{(1+e^x)(2+e^x)}

Let ex=texdx=dtLet\ e^x=t ⇒ e^x dx=dt

ex(1+ex)(2+ex)dx\frac {e^x}{(1+e^x)(2+e^x)}dx = dt(t+1)(t+2)∫\frac {dt}{(t+1)(t+2)}

                                 =$∫[\frac {1}{(t+1)}-\frac {1}{(t+2)}]dt$

                                 = $log\ |t+1|-log\ |t+2|+C$

                                 = $log|\frac {t+1}{t+2}|+C$

                                 = $log|\frac {1+e^x}{2+e^x}|+C$