Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: e5logxe4logxe3logxe2logx\frac{e^{5log\,x-e^{4\,logx}}}{e^{3\,logx}-e^{2\,logx}}

Answer

e5logxe4logxe3logxe2logx\frac{e^{5log\,x-e^{4\,logx}}}{e^{3\,logx}-e^{2\,logx}}=e4logx(elogx1)e2logx(elogx1)\frac{e^{4\,logx(e^{log\,x-1})}}{e^{2\,logx}(e^{logx-1})}

=e2logxe^2\,logx

=elogx2e^{log\,x^2}

=x2

∴∫\frac{e^{5log\,x-e^{4\,logx}}}{e^{3\,logx}-e^{2\,logx}}$$=\int x^2dx=\frac{x^3}{3}+C