Question
Mathematics Question on integral
Integrate the function: √(x−5)(x−4)6x+7
√(x−5)(x−4)6x+7 =√x2−9x+206x+7
Let 6x+7 = Adxd(x2-9x+20)+B
⇒ 6x+7 = A(2x-9)+B
Equating the coefficients of x and constant term, we obtain
2A = 6 ⇒ A = 3
−9A + B = 7 ⇒ B = 34
∴ 6x + 7 = 3 (2x − 9) + 34
∫√x2−9x+206x+7 = ∫x2−9x+203(2x−9)+34 dx
=3 ∫x2−9x+20(2x−9)+ 34 ∫x2−9x+201 dx
Let I1 = ∫x2−9x+20(2x−9) and I2 = ∫x2−9x+201dx
∴ ∫x2−9x+20(6x+7) = 3I1+34I2 ...(1)
Then,
I1 = ∫x2−9x+20(2x−9) dx
Let x2-9x+20 = t
⇒ (2x-9)dx = dt
⇒I1 = dt/√t
I1 = 2√t
I1 = 2√x2-9x+20 ...(2)
and I2 = ∫x2−9x+201dx
x2-9x+20 can be written as x2-9x+20+481-481
Therefore,
x2-9x+20+481-481
=(x-29)2-1/4
=(x-29)2-(1/2)2
⇒ I2 = ∫1/√(x-29)2-(1/2)2 dx
I2 = log|(x-29)+√x2-9x+20| ...(3)
Substituting equations (2) and (3) in (1), we obtain
∫6x+7/√x2-9x+20 dx = 3[2√x2-9x+20]+34 log[(x-29)+√x2-9x+20]+C
=6√x2-9x+20 + 34 log[(x-29)+√x2-9x+20]+C