Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 6x+7(x5)(x4)\frac{6x+7}{√(x-5)(x-4)}

Answer

6x+7(x5)(x4)\frac{6x+7}{√(x-5)(x-4)} =6x+7x29x+20\frac{6x+7}{√x^2-9x+20}

Let 6x+7 = Addx\frac{d}{dx}(x2-9x+20)+B

⇒ 6x+7 = A(2x-9)+B

Equating the coefficients of x and constant term, we obtain
2A = 6 ⇒ A = 3
−9A + B = 7 ⇒ B = 34
∴ 6x + 7 = 3 (2x − 9) + 34

6x+7x29x+20\frac{6x+7}{√x^2-9x+20} = ∫3(2x9)+34x29x+20\frac{3(2x-9)+34}{\sqrt{x^2-9x+20}} dx

=3 ∫(2x9)x29x+20\frac{(2x-9)}{\sqrt{x2-9x+20}}+ 34 ∫1x29x+20\frac{1}{\sqrt{x2-9x+20}} dx

Let I1 = ∫(2x9)x29x+20\frac{(2x-9)}{\sqrt{x^2-9x+20}} and I2 = ∫1x29x+20\frac{1}{\sqrt{x^2-9x+20}}dx

∴ ∫(6x+7)x29x+20\frac{(6x+7)}{\sqrt{x^2-9x+20}} = 3I1+34I2 ...(1)

Then,
I1 = ∫(2x9)x29x+20\frac{(2x-9)}{\sqrt{x^2-9x+20}} dx

Let x2-9x+20 = t
⇒ (2x-9)dx = dt
⇒I1 = dt/√t
I1 = 2√t
I1 = 2√x2-9x+20 ...(2)
and I2 = ∫1x29x+20\frac{1}{\sqrt{x^2-9x+20}}dx
x2-9x+20 can be written as x2-9x+20+814\frac{81}{4}-814\frac{81}{4}
Therefore,
x2-9x+20+814\frac{81}{4}-814\frac{81}{4}
=(x-92\frac{9}{2})2-1/4
=(x-92\frac{9}{2})2-(1/2)2
⇒ I2 = ∫1/√(x-92\frac{9}{2})2-(1/2)2 dx
I2 = log|(x-92\frac{9}{2})+√x2-9x+20| ...(3)
Substituting equations (2) and (3) in (1), we obtain
∫6x+7/√x2-9x+20 dx = 3[2√x2-9x+20]+34 log[(x-92\frac{9}{2})+√x2-9x+20]+C
=6√x2-9x+20 + 34 log[(x-92\frac{9}{2})+√x2-9x+20]+C