Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 5x(x+1)(x2+9)\frac{5x}{(x+1)(x^2+9)}

Answer

Let \frac{5x}{(x+1)(x^2+9)}$$=\frac{A}{(x+1)}+\frac{Bx+C}{(x^2+9)}...(1)

⇒5x=A(x2+9)+(Bx+C)(x+1)

⇒5x=Ax2+9A+Bx+Cx+C

Equating the coefficients of x2,x,and constant term,we obtain

A+B=0

B+C=5

9A+C=0

On solving these equations,we obtain

A=12-\frac{1}{2},B=12\frac{1}{2},and C=92\frac{9}{2}

From equation(1),we obtain

5x(x+1)(x2+9)\frac{5x}{(x+1)(x^2+9)}=12-\frac{1}{2}(x+1)+x2+92x2+9\frac{\frac{x}{2}+\frac{9}{2}}{x^2+9}

=12-\frac{1}{2}log|x+1|+12\frac{1}{2}xx2+9\frac{x}{x^2+9}dx+92\frac{9}{2}1x2+9\frac{1}{x^2+9}dx

=12-\frac{1}{2}log|x+1|+14\frac{1}{4}log(x2+9)+32\frac{3}{2}tan-1x3\frac{x}{3}+C