Question
Mathematics Question on integral
Integrate the function: x2+4x+105x+3
The correct answer is: 5x2+4x+10−7log∣(x+2)+x2+4x+10∣+C
Let 5x+3=Adxd(x2+4x+10)+B
⇒5x+3=A(2x+4)+B
Equating the coefficients of x and constant term, we obtain
2A=5⇒A=25
4A+B=3⇒B=−7
∴5x+3=25(2x+4)−7
⇒∫x2+4x+105x+3dx=∫x2+4x+1025(2x+4)−7dx
=25∫x2+4x+102x+4dx−7∫x2+4x+101dx
Let I1=∫x2+4x+102x+4dxandI2=∫x2+4x+101dx
∴∫x2+4x+105x+3dx=2I15−7I2...(1)
Then, I1=∫x2+4x+102x+4dx
Let x2+4x+10=t
∴(2x+4)dx=dt
⇒I1=∫tdt=2t=2x2+4x+10...(2)
I2=∫x2+4x+101dx
=∫(x2+4x+4)+61dx
=∫(x+2)2+(6)21dx
=log∣(x+2)x2+4x+10∣ ...(3)
Using equations (2) and (3) in (1), we obtain
∫x2+4x+105x+3dx=25[2x2+4x+10]−7log∣(x+2)+x2+4x+10∣+C
=5x2+4x+10−7log∣(x+2)+x2+4x+10∣+C