Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 5x+3x2+4x+10\frac{5x+3}{\sqrt{x^2+4x+10}}

Answer

The correct answer is: 5x2+4x+107log(x+2)+x2+4x+10+C5\sqrt{x^2+4x+10} - 7 log|(x+2)+\sqrt{x^2+4x+10}|+C
Let 5x+3=Addx(x2+4x+10)+B5x+3 = A \frac{d}{dx}(x^2+4x+10)+B
5x+3=A(2x+4)+B⇒ 5x+3 = A(2x+4)+B
Equating the coefficients of xx and constant term, we obtain
2A=5A=522A = 5 ⇒ A = \frac{5}{2}
4A+B=3B=74A+B = 3 ⇒ B =-7
5x+3=52(2x+4)7∴ 5x+3 = \frac{5}{2}(2x+4)-7
5x+3x2+4x+10dx=52(2x+4)7x2+4x+10dx⇒ ∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = ∫\frac{\frac{5}{2}(2x+4)-7}{\sqrt{x^2+4x+10}} dx
=522x+4x2+4x+10dx71x2+4x+10dx=\frac{5}{2} ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx-7 ∫\frac{1}{\sqrt{x^2+4x+10}} dx
Let I1=2x+4x2+4x+10dxandI2=1x2+4x+10dxI_1 = ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx\,\, and\,\, I_2 = ∫\frac{1}{\sqrt{x^2+4x+10}} dx
5x+3x2+4x+10dx=52I17I2...(1)∴ ∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = \frac{5}{2I_1}-7I_2 ...(1)
Then, I1=2x+4x2+4x+10dxI_1 = ∫\frac{2x+4}{\sqrt{x^2+4x+10}} dx
Let x2+4x+10=tx^2+4x+10 = t
(2x+4)dx=dt∴(2x+4)dx = dt
I1=dtt=2t=2x2+4x+10...(2)⇒ I_1 = ∫\frac{dt}{t} = 2\sqrt{t} = 2\sqrt{x^2+4x+10} ...(2)
I2=1x2+4x+10dxI_2 = ∫\frac{1}{\sqrt{x^2+4x+10}} dx
=1(x2+4x+4)+6dx= ∫\frac{1}{\sqrt{(x^2+4x+4)+6}} dx
=1(x+2)2+(6)2dx= ∫\frac{1}{(x+2)^2+(\sqrt{6})^2} dx
=log(x+2)x2+4x+10= log |(x+2)\sqrt{x^2+4x+10}| ...(3)
Using equations (2) and (3) in (1), we obtain
5x+3x2+4x+10dx=52[2x2+4x+10]7log(x+2)+x2+4x+10+C∫\frac{5x+3}{\sqrt{x^2+4x+10}} dx = \frac{5}{2}[2\sqrt{x^2+4x+10}]-7log|(x+2)+\sqrt{x^2+4x+10}|+C
=5x2+4x+107log(x+2)+x2+4x+10+C=5\sqrt{x^2+4x+10} - 7 log|(x+2)+\sqrt{x^2+4x+10}|+C