Question
Mathematics Question on integral
Integrate the function: 2x2+x−34x+1
Answer
Let 4x + 1 = A dxd(2x2+x-3) + B
⇒ 4x+1 = A(4x+1) + B
⇒ 4x+1 = 4Ax + A + B
Equating the coefficients of x and constant term on both sides, we obtain
4A = 4 ⇒ 1
A+B = 1 ⇒ B = 0
Let 2x2 + x - 3 = t
∴ (4x+1) dx = dt
⇒ ∫2x2+x−34x+1 dx = ∫t1dt
= 2t+C
= 22x2+x−3+C