Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 2cosx3sinx6cosx+4sinx\frac{2\cos x-3\sin x}{6 \cos x+ 4\sin x}

Answer

2cosx3sinx6cosx+4sinx=2cosx3sinx2(3cosx+2sinx)\frac{2\cos x-3\sin x}{6 \cos x+ 4\sin x}=\frac{2\cos x-3\sin x}{2(3\cos x+2\sin x)}

Let 3cos x+ 2sin x=t

∴ (-3sin x + 2cos x)dx = dt

2cosx3sinx6cosx+4sinxdx=dt2t\int \frac{2\cos x-3\sin x}{6 \cos x+ 4\sin x}dx=\int\frac{dt}{2t}

121tdt\frac{1}{2}\int\frac{1}{t}dt

= 12\frac{1}{2}log|t|+C

= 12\frac{1}{2}|2sin x + 3cos x|+C