Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1xx3\frac{1}{x-x^3}

Answer

1xx3\frac{1}{x-x^3}=1xx2\frac{1}{x-x^2}=1x(1x)(1+x)\frac{1}{x(1-x)(1+x)}

Let 1x(1x)(1+x)=Ax+B(1x)+C1+x.........(i)\frac{1}{x(1-x)(1+x)}=\frac{A}{x}+\frac{B}{(1-x)}+\frac{C}{1+x}.........(i)

⇒1=A-Ax2+Bx+Bx2+Cx-Cx2

Equating the coefficients of x2,x, and the constant term, we obtain

-A+B-C=0

B+C=0

A=1

In solving these equations, we obtain

A=1,B=12\frac{1}{2}, and C=12-\frac{1}{2}

From equation(1),we obtain

1x\frac{1}{x}(1-x)(1+x)=1x\frac{1}{x}+12\frac{1}{2}(1-x)-12\frac{1}{2}(1+x)

⇒∫1x\frac{1}{x}(1-x)(1+x)dx=∫1x\frac{1}{x}dx+12\frac{1}{2}11x\frac{1}{1-x}dx-12\frac{1}{2}11+x\frac{1}{1+x}dx

log|x|-log|(1-x)12^{\frac{1}{2}}|-log|(1+x)12^{\frac{1}{2}}|

=log|x21x212\frac{x^2}{1-x^2}{^{\frac{1}{2}}}|+C

=12\frac{1}{2}log|x21x2\frac{x^2}{1-x^2}|+C