Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1xaxx2\frac{1}{x\sqrt{ax-x^2}}

Answer

1xaxx2\frac{1}{x\sqrt{ax-x^2}}

Let x=at\frac{a}{t} \Rightarrow dx=at2-\frac{a}{t^2}dt

\Rightarrow1xaxx2dx\frac{1}{x\sqrt{ax-x^2}}dx=∫1ata.at(at)2(at2)dt\frac{1}{\frac{a}{t}\sqrt{\frac{a.a}{t}}-(\frac{a}{t})^2}(\frac{-a}{t^2})dt

=1a1t2tt2t=-\frac{1}{a}{\frac{1}{\sqrt{\frac{t^2}{t}-\frac{t^2}{t}}}}

=1a1t1dt=-\frac{1}{a}\int \frac{1}{\sqrt{t-1}}dt

=1a[2t1]+C=-\frac{1}{a}[2\sqrt t-1]+C

=1a[2ax1]+C=-\frac{1}{a}[\frac{2\sqrt a}{x-1}]+C

=2a(axx)+C=-\frac{2}{a}(\frac{\sqrt{a-x}}{x})+C