Question
Mathematics Question on integral
Integrate the function: xax−x21
Answer
xax−x21
Let x=ta ⇒ dx=−t2adt
⇒∫xax−x21dx=∫tata.a−(ta)21(t2−a)dt
=−a1tt2−tt21
=−a1∫t−11dt
=−a1[2t−1]+C
=−a1[x−12a]+C
=−a2(xa−x)+C
Integrate the function: xax−x21
xax−x21
Let x=ta ⇒ dx=−t2adt
⇒∫xax−x21dx=∫tata.a−(ta)21(t2−a)dt
=−a1tt2−tt21
=−a1∫t−11dt
=−a1[2t−1]+C
=−a1[x−12a]+C
=−a2(xa−x)+C