Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1(x2+1)(x2+4)\frac {1}{(x^2+1)(x^2+4)}

Answer

1(x2+1)(x2+4)\frac {1}{(x^2+1)(x^2+4)} = Ax+B(x2+1)+Cx+D(x2+4)\frac {Ax+B}{(x^2+1)}+\frac {Cx+D}{(x^2+4)}

1=(Ax+B)(x2+4)+(Cx+D)(x2+1)⇒1 = (Ax+B)(x^2+4)+(Cx+D)(x^2+1)

1=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+D⇒1 = Ax^3+4Ax+Bx^2+4B+Cx^3+Cx+Dx^2+D

Equating the coefficients of x3,x2,x,x^3,x^2,x, and constant term,we obtain

A+C=0A+C=0

B+D=0B+D=0

4A+C=04A+C=0

4B+D=14B+D=1

On solving these equations, we obtain

A=0, B=13, C=0, D=13A=0,\ B=\frac 13,\ C=0,\ D=-\frac 13

From equation(1), we obtain

1(x2+1)(x2+4)\frac {1}{(x^2+1)(x^2+4)} = 13(x2+1)13(x2+4)\frac {1}{3(x^2+1)}-\frac {1}{3(x^2+4)}

∫$$\frac {1}{(x^2+1)(x^2+4)} = 131x2+1dx131x2+4dx\frac 13∫\frac {1}{x^2+1}dx-\frac {1}3∫\frac {1}{x^2+4}dx

                              =$\frac 13\tan^{-1}x-\frac 13.\frac 12tan^{-1}\frac x2+C$

                              =$\frac 13tan^{-1}x-\frac 16tan^{-1}\frac x2+C$