Question
Mathematics Question on integral
Integrate the function: (x2+1)(x2+4)1
Answer
∴(x2+1)(x2+4)1 = (x2+1)Ax+B+(x2+4)Cx+D
⇒1=(Ax+B)(x2+4)+(Cx+D)(x2+1)
⇒1=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+D
Equating the coefficients of x3,x2,x, and constant term,we obtain
A+C=0
B+D=0
4A+C=0
4B+D=1
On solving these equations, we obtain
A=0, B=31, C=0, D=−31
From equation(1), we obtain
(x2+1)(x2+4)1 = 3(x2+1)1−3(x2+4)1
∫$$\frac {1}{(x^2+1)(x^2+4)} = 31∫x2+11dx−31∫x2+41dx
=$\frac 13\tan^{-1}x-\frac 13.\frac 12tan^{-1}\frac x2+C$
=$\frac 13tan^{-1}x-\frac 16tan^{-1}\frac x2+C$