Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1(xa)(xb)\frac {1}{\sqrt {(x-a)(x-b)}}

Answer

(x-a)(x-b) can be written as x2 - (a+b)x + ab.
Therefore,
x2- (a+b)x + ab

= x2- (a+b)x + (a+b)24\frac {(a+b)^2}{4} - (a+b)24\frac {(a+b)^2}{4} + ab

= [x-(a+b2\frac {a+b}{2})]2 - (ab)24\frac {(a-b)^2}{4}

∫$$\frac {1}{\sqrt {(x-a)(x-b)}}\ dx = 1x(a+b2)2(ab2)2dx∫\frac {1}{\sqrt {{x-(\frac {a+b}{2})}^2-(\frac {a-b}{2})^2}} dx

Let x - (a+b2\frac {a+b}{2}) = t

∴ dx = dt

1x(a+b2)2(ab2)2dx∫\frac {1}{\sqrt {{x-(\frac {a+b}{2})}^2-(\frac {a-b}{2})^2}} dx = 1t2(ab2)2dt∫\frac {1}{\sqrt {t^2-(\frac {a-b}{2})^2}}dt

= log t+t2(ab2)2+Clog \ |t+\sqrt {t^2-(\frac {a-b}{2})^2|}+C

= log x(a+b2)+(xa)(xb)+Clog \ |{x-(\frac {a+b}{2})}+\sqrt {(x-a)(x-b)}|+C