Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1x+a+x+b\frac{1}{\sqrt{x+a}+\sqrt{x+b}}

Answer

1x+a+x+b\frac{1}{\sqrt{x+a}+\sqrt{x+b}}=1x+a+x+b\frac{1}{\sqrt{x+a}+\sqrt{x+b}}×x+a\sqrt{x+a}-x+bx+a\frac{\sqrt{x+b}}{\sqrt{x+a}}-x+b\sqrt{x+b}

=x+ax+b(x+a)(x+b)\frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)}

1x+a=x+bdx=1ab(x+a=x+b)dx\int \frac{1}{\sqrt{x+a}}=\sqrt{x}+bdx=\frac{1}{a}-b\int (\sqrt{x+a}=\sqrt{x+b})dx

=23\frac{2}{3}(a-b)[(x+a)32^{\frac{3}{2}}-(x+b)32^{\frac{3}{2}}]+C