Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1(x1)(x2)\frac {1}{\sqrt {(x-1)(x-2)}}

Answer

(x-1)(x-2) can be written as x2-3x+2.
Therefore,
x2 - 3x + 2
= x2 - 3x +94\frac 94 -94\frac 94 + 2
=(x - 32\frac 32)2 - 14\frac 14
=(x - 32\frac 32)2 - (12\frac 12)2
∫$$\frac {1}{\sqrt {(x-1)(x-2)}}\ dx= 1(x32)2(12)2dx∫\frac {1}{\sqrt {(x-\frac 32)^2-(\frac 12)^2}} dx
Let x-32\frac 32 = t
∴ dx = dt
1(x32)2(12)2dx∫\frac {1}{\sqrt {(x-\frac 32)^2-(\frac 12)^2}} dx = 1t2(12)2dt∫\frac {1}{\sqrt {t^2-(\frac 12)^2}} dt
= log t+t2(12)2+Clog\ |t+\sqrt {t^2-(\frac 12)^2}|+C
=log (x32)+x23x+2+Clog\ |(x-\frac 32)+\sqrt {x^2-3x+2}|+C