Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1sin3xsin(x+α)\frac{1}{\sqrt{sin^{3}xsin(x+α)}}

Answer

\frac{1}{\sqrt{sin^{3}xsin(x+α)}}$$\frac{1}{\sqrt{sin^{3}x(sinxcosα+cosxsinα)}}

=1sin4xcosα+sin3xcosxsinα)=\frac{1}{\sqrt{sin^{4}xcosα+sin^{3}x cosx sinα)}}

=1sin2xcosα+cotxsinα=\frac{1}{sin^{2}x\sqrt{cosα+cotx sinα}}

=cosec2xcosα+cotxsinα=\frac{cosec^{2}x}{\sqrt{cosα+cotx sinα}}

Let cosα+cotx sinα=t$$⇒-cosec^{2}x sinα dx=dt

1sin3xsin(x+α)dx∴∫\frac{1}{sin^{3}xsin(x+α)}dx=cosec2xcosα+cotxsinαdx∫\frac{cosec^{2}x}{\sqrt{cosα+cotx sinα}} dx

=1sinαdtt=\frac{-1}{sinα∫}\frac{dt}{\sqrt{t}}

=1sinα[2t]+C=\frac{-1}{sinα}[2\sqrt{t}]+C

=1sinα[2cosα+cotxsinα]+C=\frac{-1}{sinα}[2\sqrt{cosα+cotx sinα}]+C

=2sinαcosα+cosxsinαsinx+C=\frac{-2}{sinα}√\sqrt{cosα+\frac{cosx sinα}{sinx}}+C

=2sinαsinxcosα+cosxsinαsinx+C=\frac{-2}{sinα}\sqrt{\frac{sinx cosα+cosx sinα}{sinx}}+C

=2sinαsin(x+α)sinx+C=\frac{-2}{sinα}\sqrt{\frac{sin(x+α)}{sinx}}+C