Question
Mathematics Question on integral
Integrate the function: sin3xsin(x+α)1
Answer
\frac{1}{\sqrt{sin^{3}xsin(x+α)}}$$\frac{1}{\sqrt{sin^{3}x(sinxcosα+cosxsinα)}}
=sin4xcosα+sin3xcosxsinα)1
=sin2xcosα+cotxsinα1
=cosα+cotxsinαcosec2x
Let cosα+cotx sinα=t$$⇒-cosec^{2}x sinα dx=dt
∴∫sin3xsin(x+α)1dx=∫cosα+cotxsinαcosec2xdx
=sinα∫−1tdt
=sinα−1[2t]+C
=sinα−1[2cosα+cotxsinα]+C
=sinα−2√cosα+sinxcosxsinα+C
=sinα−2sinxsinxcosα+cosxsinα+C
=sinα−2sinxsin(x+α)+C