Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1(2x)2+1\frac {1}{\sqrt {(2-x)^2+1}}

Answer

Let 2x=tLet\ 2-x = t

dx=dt⇒ -dx = dt

∫$$\frac {1}{\sqrt {(2-x)^2+1}}\ dx = 1t2+1dt-∫\frac {1}{\sqrt {t^2+1} }dt

=log t+t2+1+C= -log\ |t+\sqrt {t^2+1}|+C [1x2+a2dt=log x+x2+a2][∫\frac {1}{\sqrt {x^2+a^2} }dt = log\ |x+\sqrt {x^2+a^2}|]

=log 2x(2x)2+1+C=-log\ |2-x\sqrt {(2-x)^2+1}|+C

=log 1(2x)+x24x+5+C=log\ |\frac {1}{(2-x)+\sqrt {x^2-4x+5}}|+C