Question
Mathematics Question on integral
Integrate the function: cos(x+a)cos(x+b)1
Answer
cos(x+a)cos(x+b)1
Multiplying and dividing by sin(a−b), we obtain
sin (a−b)1[cos(x+a)cos(x+b)sin (a−b)]
=\frac {1} {sin(a-b)}$$[\frac {sin[(x+a)-(x+b)]}{cos[(x+a)cos(x+b)]}]
= \frac {1} {sin(a-b)}$$[\frac {sin(x+a).cos(x+b)-cos(x+a)sin(x+b)}{cos(x+a)cos(x+b)}]
= \frac {1} {sin(a-b)}$$[\frac {sin(x+a)}{cos(x+a)}-\frac {sin(x+b)}{cos(x+b)}]
= \frac {1} {sin(a-b)}$$[tan(x+a)-tan(x+b)]
∫$$\frac {1}{cos(x+a)cos(x+b)}dx= \frac {1} {sin(a-b)}$$∫[tan(x+a)-tan(x+b)]dx
=$\frac {1} {sin(a-b)}$$[-log|cos(x+a)|+log|cos(x+b)|]+C$
=$\frac {1} {sin(a-b)}$$log|\frac {cos(x+b)}{cos(x+a)}|+C$