Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 1cos2x(1tanx)2\frac{1}{\cos^2x(1-\tan x)^2}

Answer

1cos2x(1tanx)2=sec2x(1tanx)2\frac{1}{\cos^2x(1-\tan x)^2}=\frac{\sec^2x}{(1-\tan x)^2}

Let (1-tanx) = t

∴ -sec2 xdx=dt

sec2x(1tanx)2dx=dtt2\Rightarrow \int\frac{\sec^2x}{(1-\tan x)^2}dx=\int\frac{-dt}{t^2}

= t2dt-\int t^2dt

= +1t+C+\frac{1}{t}+C

=1(1tanx)+C\frac{1}{(1-\tan x)}+C