Question
Mathematics Question on integral
Integrate the function: cos2x(1−tanx)21
Answer
cos2x(1−tanx)21=(1−tanx)2sec2x
Let (1-tanx) = t
∴ -sec2 xdx=dt
⇒∫(1−tanx)2sec2xdx=∫t2−dt
= −∫t2dt
= +t1+C
=(1−tanx)1+C
Integrate the function: cos2x(1−tanx)21
cos2x(1−tanx)21=(1−tanx)2sec2x
Let (1-tanx) = t
∴ -sec2 xdx=dt
⇒∫(1−tanx)2sec2xdx=∫t2−dt
= −∫t2dt
= +t1+C
=(1−tanx)1+C