Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: 19x2+6x+5\frac {1}{ {9x^2+6x+5}}

Answer

∫$$\frac {1}{9x^2+6x+5} dx = 1(3x+1)2+(2)2dx∫\frac {1}{(3x+1)^2+(2)^2}dx

Let (3x+1)=tLet \ (3x+1) = t

3dx=dt∴ 3dx = dt

1(3x+1)2+(2)2dx∫\frac {1}{(3x+1)^2+(2)^2}dx == 131t2+22dt\frac 13 ∫\frac {1}{t^2+2^2} dt

                                       $=\frac 13 [\frac 12\ tan^{-1}(\frac t2)]+C$

                                       $=\frac 16\ tan^{-1}(\frac {3x+1}{2})+C$